
Package: HighFrequencyChecks (via
r-universe)
September 27, 2024

Type Package

Title High Frequency Checks

Version 0.5.0

Maintainer Edouard Legoupil <legoupil@unhcr.org>

Description During the data collection, a series of automatic check,
aka: High Frequency checks, are required. The functions shared
here are useful during the data collection process to check
periodicallyxfor possible errors, and will provide meaningful
inputs to the enumerators. All these functions do not have to
be ran at the same period of time. They are provided there to
help data supervisor to build reports. This work is an
adaptation of a Stata Package from [Innovations for Poverty
Action](https://github.com/PovertyAction/high-frequency-checks).

License MIT + file LICENSE

URL https://edouard-legoupil.github.io/HighFrequencyChecks

BugReports https://github.com/Edouard-Legoupil/HighFrequencyChecks/issues

Depends R (>= 3.5.0)

Imports config, DescTools, dplyr, ggplot2, golem, kobocruncher,
magrittr, outliers, readr, reshape2, riddle, shiny,
shinydashboard, sjlabelled, sp, stats, stringi, tidyverse,
unhcrshiny, unhcrthemes, utils

Suggests data.table, DT, gsubfn, knitr, rmarkdown, spelling, testthat

Remotes unhcr-dataviz/unhcrdown, unhcr-dataviz/unhcrthemes,
edouard-legoupil/unhcrshiny, edouard-legoupil/kobocruncher,
edouard-legoupil/riddle

VignetteBuilder knitr

Config/fusen/version 0.5.2

Encoding UTF-8

LazyData true

1

https://edouard-legoupil.github.io/HighFrequencyChecks
https://github.com/Edouard-Legoupil/HighFrequencyChecks/issues

2 Contents

RoxygenNote 7.2.3.9000

Language en-US

Repository https://humanitarian-user-group.r-universe.dev

RemoteUrl https://github.com/Edouard-Legoupil/HighFrequencyChecks

RemoteRef HEAD

RemoteSha 92c85ccda651dd111b0334c3304687e313ad1d58

Contents

assessmentDailyValidSurveys . 3
assessmentDuration . 4
assessmentDurationOutliers . 5
assessmentInterviewTime . 6
assessmentProductivity . 7
assessmentTrackingSheet . 8
enumeratorErrorsSummary . 10
enumeratorIsLazy . 11
enumeratorProductivity . 12
enumeratorProductivityOutliers . 13
enumeratorSurveysConsent . 14
enumeratorSurveysDuration . 15
isInterviewAtTheSamplePoint . 16
isInterviewCompleted . 18
isInterviewInTheCorrectSite . 19
isInterviewTooShort . 21
isInterviewTooShortForTheHouseholdSize . 23
isInterviewWithConsent . 24
isSurveyEndBeforeItStarts . 25
isSurveyMadeInTheFuture . 27
isSurveyOnMoreThanADay . 28
isSurveyStartedBeforeTheAssessment . 30
isuniquerespondantIDDuplicated . 31
isuniquerespondantIDMissing . 33
run_app . 34
surveyBigValues . 35
surveyDistinctValues . 36
surveyMissingValues . 37
surveyOtherValues . 38
surveyOutliers . 39
surveySmallValues . 41

Index 43

assessmentDailyValidSurveys 3

assessmentDailyValidSurveys

Daily number of filled forms per consent status

Description

This function display the number of filled forms conducted per day per consent status.

Usage

assessmentDailyValidSurveys(
ds = NULL,
surveyDate = NULL,
dateFormat = NULL,
surveyConsent = NULL,
attempt = NULL

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

surveyDate name of the field in the dataset where the date of the survey is stored: string

dateFormat format used for the date: string (’%m/%d/%Y’)

surveyConsent name of the field in the dataset where the survey consent is stored: string

attempt name of the field in the dataset where the interview attempt output is stored:
string

checkperiod if not null number of day before today when the check should be made
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete = TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
surveyDate <- "survey_date"
dateFormat <- "%m/%d/%Y"
surveyConsent <- "survey_consent"
result <- assessmentDailyValidSurveys(

ds = ds,

4 assessmentDuration

surveyDate = surveyDate,
dateFormat = dateFormat,
surveyConsent = surveyConsent)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

assessmentDuration Compute the average and total time for the surveys

Description

This function compute the average and total time for the surveys Warning: If there are uncorrected
mistakes in the survey dates, it can lead to have the length of the survey in seconds and this check
will not performed well

Usage

assessmentDuration(ds = NULL, dates = NULL, attempt = NULL)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame
dates name of the fields where the information about the start and end date of the

survey is stored: list of string (c(’start_date’,’end_date’))
attempt name of the field in the dataset where the interview attempt output is stored:

string
checkperiod if not null number of day before today when the check should be made
surveyConsent name of the field in the dataset where the survey consent is stored: string
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
dates <- c("survey_start","end_survey")

result <- assessmentDuration(ds = ds, dates=dates)
knitr::kable(head(result[["ret_log"]],10))
print(result[["graph"]])

assessmentDurationOutliers 5

assessmentDurationOutliers

Report the outlier durations for the surveys

Description

This function report the outlier durations for the surveys

Usage

assessmentDurationOutliers(
ds = NULL,
dates = NULL,
sdval = 2,
attempt = NULL,
startDataCollection = NULL,
reportingColumns = c(enumeratorID, uniquerespondantID)

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

dates name of the fields where the information about the start and end date of the
survey is stored: list of string (c(’start_date’,’end_date’))

sdval (Optional, by default set to 2) number of standard deviation for which the data
within is considered as acceptable: integer

attempt name of the field in the dataset where the interview attempt output is stored:
string

startDataCollection

Date when the data collections started
reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

checkperiod if not null number of day before today when the check should be made
uniquerespondantID

name of the field where the survey unique ID is stored: string

enumeratorID name of the field where the enumerator ID is stored: string

surveyConsent name of the field in the dataset where the survey consent is stored: string
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

6 assessmentInterviewTime

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
dates <- c("survey_start","end_survey")
uniquerespondantID <- "X_uuid"
enumeratorID <- "enumerator_id"
reportingColumns <- c(enumeratorID, uniquerespondantID)
sdval<-2
result <- assessmentDurationOutliers(ds = ds,

dates=dates,
sdval=sdval,
reportingColumns=reportingColumns)

knitr::kable(head(result[["ret_log"]],10))
print(result[["graph"]])

assessmentInterviewTime

Daily number of filled forms per consent status

Description

This function display the number of filled forms conducted per day per consent status.

Usage

assessmentInterviewTime(
ds = NULL,
surveyDate = NULL,
dateFormat = NULL,
surveyConsent = NULL

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

surveyDate name of the field in the dataset where the date of the survey is stored: string

dateFormat format used for the date: string (’%m/%d/%Y’)

surveyConsent name of the field in the dataset where the survey consent is stored: string

assessmentProductivity 7

consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

attempt name of the field in the dataset where the interview attempt output is stored:
string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
surveyDate <- "survey_date"
dateFormat <- "%m/%d/%Y"
surveyConsent <- "survey_consent"
result <- assessmentInterviewTime(ds = ds,

surveyDate=surveyDate,
dateFormat=dateFormat,
surveyConsent=surveyConsent)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

assessmentProductivity

Summary of daily average productivity

Description

This function display the number of interview conducted per day.

Usage

assessmentProductivity(
ds = NULL,
surveyDate = NULL,
dateFormat = NULL,
surveyConsent = NULL

)

8 assessmentTrackingSheet

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

surveyDate name of the field in the dataset where the date of the survey is stored: string

dateFormat format used for the date: string (’%m/%d/%Y’)

surveyConsent name of the field in the dataset where the survey consent is stored: string

checkperiod if not null number of day before today when the check should be made
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
surveyDate <- "survey_date"
dateFormat <- "%m/%d/%Y"
surveyConsent <- "survey_consent"
result <- assessmentProductivity(ds = ds,

surveyDate = surveyDate,
dateFormat = dateFormat,
surveyConsent = surveyConsent)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

assessmentTrackingSheet

Overall tracking sheet

Description

This function display the overall tracking sheet.

Usage

assessmentTrackingSheet(
ds = NULL,
dsSite = NULL,
sampleSizeTable = NULL,
sampleSizeTableSite = NULL,

assessmentTrackingSheet 9

sampleSizeTableTarget = NULL,
sampleSizeTableAvailable = NULL,
surveyConsent = NULL,
consentForValidSurvey = NULL

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

dsSite name of the field in the dataset where the site is stored: string
sampleSizeTable

dataset containing the sampling frame: data.frame
sampleSizeTableSite

name of the field in the sampling frame where the site is stored: string
sampleSizeTableTarget

name of the field where the target number of survey is stored in the sampling
frame: string

sampleSizeTableAvailable

name of the field where the number of points generated is stored in the sampling
frame: string

surveyConsent name of the field in the dataset where the survey consent is stored: string
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

checkperiod if not null number of day before today when the check should be made

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
dsSite <- "union_name"
load(system.file("SampleSize.RData", package = "HighFrequencyChecks"))
sampleSizeTable <- SampleSize

sampleSizeTableSite <- "Union"
sampleSizeTableTarget <- "SS"
sampleSizeTableAvailable <- "TotPts" # Usually the Target + a buffer
surveyConsent <- "survey_consent"
consentForValidSurvey <- "yes" # consent value for yes

result <- assessmentTrackingSheet(ds = ds,
dsSite = dsSite,

10 enumeratorErrorsSummary

sampleSizeTable = sampleSizeTable,
sampleSizeTableSite = sampleSizeTableSite,
sampleSizeTableTarget = sampleSizeTableTarget,
sampleSizeTableAvailable = sampleSizeTableAvailable,
surveyConsent = surveyConsent,
consentForValidSurvey = consentForValidSurvey)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

enumeratorErrorsSummary

Create a dashboard displaying the number of errors by enumerators

Description

This function display the number of errors made by the enumerator, one graph is generated by
enumerator showing for each

Usage

enumeratorErrorsSummary(enumeratorID = NULL, reports = NULL)

Arguments

enumeratorID name of the field where the enumerator ID is stored: string

reports reports names generated from the other checks included in this package, be sure
when you choose the columns to be included in each report generated that the
enumeratorID is selected before including the report as a parameter to this func-
tion: list of string(c(report1,report2,...))

surveyConsent name of the field in the dataset where the survey consent is stored: string

consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

enumeratorIsLazy 11

Examples

enumeratorID <- "enumerator_id"
reports <- c("isInterviewCompleted",
"isInterviewInTheCorrectSite",
"isInterviewTooShort",
"isInterviewTooShortForTheHouseholdSize",
"isInterviewWithConsent",
"isSurveyEndBeforeItStarts",
"isSurveyMadeInTheFuture",
"isSurveyOnMoreThanADay",
"isSurveyStartedBeforeTheAssessment",
"isuniquerespondantIDDuplicated",
"isuniquerespondantIDMissing")
#
result <- enumeratorErrorsSummary(enumeratorID=enumeratorID,ds = ds,

surveyDate=surveyDate,
dateFormat=dateFormat,
surveyConsent=surveyConsent

reports=reports)
print(result[["graph"]])

enumeratorIsLazy Check the enumerators who pick up less than X answers per specific
question

Description

This function display the enumerators who picked up less than a specified amount of answers per
specific question. This can be useful for select_multiple questions where respondent shall give at
least 3 options for instance.

Usage

enumeratorIsLazy(
ds = NULL,
enumeratorID = NULL,
questionsEnumeratorIsLazy = NULL

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

enumeratorID name of the field where the enumerator ID is stored: string
questionsEnumeratorIsLazy

columns name from the dataset and value you want to check against (c(col1=value1,col2=value2,...)):
named list of integer the column name is the main part of the name gener-
ated by kobo (eg: for the question ’main_income’, kobo will generate one

12 enumeratorProductivity

TRUE/FALSE column per possible answer as ’main_income.work’, ’main_income.remittance’...,
only the main part ’main_income’ has to be specified here)

checkperiod if not null number of day before today when the check should be made

surveyConsent name of the field in the dataset where the survey consent is stored: string

consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
enumeratorID <- "enumerator_id"
questionsEnumeratorIsLazy <- c(consent_received.shelter_nfi.non_food_items=3,

consent_received.food_security.main_income=3,
consent_received.child_protection.boy_risk=3,
consent_received.child_protection.girl_risk=3)

result <- enumeratorIsLazy(ds = ds,
enumeratorID=enumeratorID,
questionsEnumeratorIsLazy=questionsEnumeratorIsLazy)

knitr::kable(head(result[["ret_log"]], 10))

enumeratorProductivity

Check the number of Interview by enumerator

Description

This function display the total number of survey made and the average per day per enumerator.

Usage

enumeratorProductivity(ds = NULL, surveyDate = NULL, enumeratorID = NULL)

enumeratorProductivityOutliers 13

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

surveyDate name of the field in the dataset where the date of the survey is stored: string

enumeratorID name of the field where the enumerator ID is stored: string

checkperiod if not null number of day before today when the check should be made

surveyConsent name of the field in the dataset where the survey consent is stored: string
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
surveyDate <- "survey_date"
enumeratorID <- "enumerator_id"

result <- enumeratorProductivity(ds = ds,
surveyDate=surveyDate,
enumeratorID=enumeratorID)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

enumeratorProductivityOutliers

Check the enumerators with very low or high productivity

Description

This function display the enumerators with very low or high productivity.

Usage

enumeratorProductivityOutliers(
ds = NULL,
enumeratorID = NULL,
surveyDate = NULL,
sdval = 2

)

14 enumeratorSurveysConsent

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

enumeratorID name of the field where the enumerator ID is stored: string

surveyDate name of the field in the dataset where the date of the survey is stored: string

sdval (Optional, by default set to 2) number of standard deviation for which the data
within is considered as acceptable: integer

checkperiod if not null number of day before today when the check should be made

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
enumeratorID <- "enumerator_id"
surveyDate <- "survey_date"
sdval<-2

result <- enumeratorProductivityOutliers(ds = ds,
enumeratorID=enumeratorID,
surveyDate=surveyDate,
sdval=sdval)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

enumeratorSurveysConsent

Percentage of non-completed interviews by enumerator

Description

This function display the percentage of non-completed interviews per enumerator.

Usage

enumeratorSurveysConsent(ds = NULL, surveyConsent = NULL, enumeratorID = NULL)

enumeratorSurveysDuration 15

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

surveyConsent name of the field in the dataset where the survey consent is stored: string

enumeratorID name of the field where the enumerator ID is stored: string

checkperiod if not null number of day before today when the check should be made

consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
surveyConsent <- "survey_consent"
enumeratorID <- "enumerator_id"

result <- enumeratorSurveysConsent(ds = ds,
surveyConsent=surveyConsent,

enumeratorID=enumeratorID)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

enumeratorSurveysDuration

Check the average interview duration by enumerator

Description

This function display the average interview duration per enumerator.

Usage

enumeratorSurveysDuration(ds = NULL, dates = NULL, enumeratorID = NULL)

16 isInterviewAtTheSamplePoint

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

dates name of the fields where the information about the start and end date of the
survey is stored: list of string (c(’start_date’,’end_date’))

enumeratorID name of the field where the enumerator ID is stored: string

checkperiod if not null number of day before today when the check should be made

surveyConsent name of the field in the dataset where the survey consent is stored: string

consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
dates <- c("survey_start","end_survey")
enumeratorID <- "enumerator_id"
result <- enumeratorSurveysDuration(ds = ds,

dates=dates,
enumeratorID=enumeratorID)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

isInterviewAtTheSamplePoint

GIS check surveys if fall without Xm radius from a sampled point

Description

This function check that all interviews in the dataset were made within a distance from a sampled
point. It is based on a GIS shapefile providing the sample points for the assessment. The function
is based on the GPS data filled in the survey to determine their location. There is an option to
automatically mark for deletion the surveys which are to far away from a sampled point.

One internal function "make_GeodesicBuffer" used to create the buffers is created by Valentin
https://stackoverflow.com/users/5193830/valentin

isInterviewAtTheSamplePoint 17

Usage

isInterviewAtTheSamplePoint(
ds = NULL,
dsCoordinates = NULL,
sampledPoints = NULL,
buffer = 10,
surveyConsent = NULL,
reportingColumns = c(enumeratorID, uniquerespondantID),
deleteIsInterviewAtTheSamplePoint = FALSE

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

dsCoordinates name of the fields from the dataset where the information about the GPS coor-
dinates are stored: list of string (c(’Long’,’Lat’))

sampledPoints dataset containing the shapefile of the households sampled - Regardless the pro-
jection used for the shapefile, it is transformed to WGS84

buffer value in meter to determine the buffer from a sampled point which is acceptable:
integer

surveyConsent name of the field in the dataset where the survey consent is stored: string
reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

deleteIsInterviewAtTheSamplePoint

(Optional, by default set as FALSE) if TRUE, the survey in error will be marked
as ’deletedIsInterviewAtTheSamplePoint’: boolean (TRUE/FALSE)

checkperiod if not null number of day before today when the check should be made
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

uniquerespondantID

name of the field where the survey unique ID is stored: string

enumeratorID name of the field where the enumerator ID is stored: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset

18 isInterviewCompleted

load(system.file("SamplePts.RData", package = "HighFrequencyChecks"))
sampledPoints <- SamplePts

dsCoordinates <- c("X_gps_reading_longitude","X_gps_reading_latitude")
buffer <- 10
surveyConsent <- "survey_consent"
uniquerespondantID <- "X_uuid"
enumeratorID <- "enumerator_id"
reportingColumns <- c(enumeratorID, uniquerespondantID)

result <- isInterviewAtTheSamplePoint(ds = ds,
dsCoordinates = dsCoordinates,
sampledPoints=sampledPoints,
buffer=buffer,
surveyConsent=surveyConsent,
reportingColumns=reportingColumns,
deleteIsInterviewAtTheSamplePoint=FALSE)
knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

isInterviewCompleted Check that all interviews were completed

Description

This function check that all interviews in the dataset are completed, meaning all the interviews have
an end date and time. There is an option to automatically mark for deletion the surveys which have
not an end date.

Usage

isInterviewCompleted(
ds = NULL,
surveyConsent = NULL,
dates = NULL,
reportingColumns = c(enumeratorID, uniquerespondantID),
deleteIsInterviewCompleted = FALSE

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame
surveyConsent name of the field in the dataset where the survey consent is stored: string
dates name of the fields where the information about the start and end date of the

survey is stored: list of string (c(’start_date’,’end_date’))
reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

isInterviewInTheCorrectSite 19

deleteIsInterviewCompleted

(Optional, by default set as FALSE) if TRUE, the survey in error will be marked
as ’deletedIsInterviewCompleted’: boolean (TRUE/FALSE)

checkperiod if not null number of day before today when the check should be made
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

uniquerespondantID

name of the field where the survey unique ID is stored: string

enumeratorID name of the field where the enumerator ID is stored: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
surveyConsent <- "survey_consent"
dates <- c("survey_start","end_survey")
uniquerespondantID <- "X_uuid"
enumeratorID <- "enumerator_id"
reportingColumns <- c(enumeratorID, uniquerespondantID)

result <- isInterviewCompleted(ds = ds,
surveyConsent=surveyConsent,
dates=dates,
reportingColumns=reportingColumns,
deleteIsInterviewCompleted=FALSE)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

isInterviewInTheCorrectSite

GIS check surveys for site

Description

This function check that all interviews in the dataset were made in the correct site. It is based on a
GIS shapefile providing the boundaries of each site with their names. The function is based on the
GPS data filled in the survey to determine their location. There is an option to automatically correct
the site in the surveys whith the correct location.

20 isInterviewInTheCorrectSite

Usage

isInterviewInTheCorrectSite(
ds = NULL,
dsSite = NULL,
dsCoordinates = NULL,
adminBoundaries = NULL,
adminBoundariesSite = NULL,
surveyConsent = NULL,
reportingColumns = c(enumeratorID, uniquerespondantID),
correctIsInterviewInTheCorrectSite = FALSE

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

dsSite name of the field in the dataset where the site is stored: string

dsCoordinates name of the fields from the dataset where the information about the GPS coor-
dinates are stored: list of string (c(’Long’,’Lat’))

adminBoundaries

dataset containing the shapefile of the site boundaries - Regardless the projection
used for the shapefile, it is transformed to WGS84

adminBoundariesSite

name of the field in the shapefile where the site is stored: string

surveyConsent name of the field in the dataset where the survey consent is stored: string
reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

correctIsInterviewInTheCorrectSite

(Optional, by default set as FALSE) if TRUE, the site in the survey which is
wrong will be replaced by the real one: boolean (TRUE/FALSE)

checkperiod if not null number of day before today when the check should be made
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

uniquerespondantID

name of the field where the survey unique ID is stored: string

enumeratorID name of the field where the enumerator ID is stored: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

isInterviewTooShort 21

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
dsSite <- "union_name"
dsCoordinates <- c("X_gps_reading_longitude","X_gps_reading_latitude")
load(system.file("admin.RData", package = "HighFrequencyChecks"))
adminBoundaries <- admin
adminBoundariesSite <- "Union"
surveyConsent <- "survey_consent"
uniquerespondantID <- "X_uuid"
enumeratorID <- "enumerator_id"
reportingColumns <- c(enumeratorID, uniquerespondantID)

result <- isInterviewInTheCorrectSite(ds = ds,
dsSite=dsSite,
dsCoordinates = dsCoordinates,
adminBoundaries=adminBoundaries,
adminBoundariesSite=adminBoundariesSite,
surveyConsent=surveyConsent,
reportingColumns=reportingColumns,
correctIsInterviewInTheCorrectSite=FALSE)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

isInterviewTooShort Check that the duration of each interview is more than a threshold

Description

This function check that the duration of each interview is more than a specified threshold. There is
an option to automatically mark for deletion the surveys which are under the threshold. Warning:
If there are uncorrected mistakes in the survey dates, it can lead to have the length of the survey in
seconds and this check will not performed well

Usage

isInterviewTooShort(
ds = NULL,
surveyConsent = NULL,
dates = NULL,
minimumSurveyDuration = 30,
reportingColumns = c(enumeratorID, uniquerespondantID),
deleteIsInterviewTooShort = FALSE

)

22 isInterviewTooShort

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

surveyConsent name of the field in the dataset where the survey consent is stored: string

dates name of the fields where the information about the start and end date of the
survey is stored: list of string (c(’start_date’,’end_date’))

minimumSurveyDuration

minimum acceptable survey duration in minutes: integer
reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

deleteIsInterviewTooShort

(Optional, by default set as FALSE) if TRUE, the survey in error will be marked
as ’deletedIsInterviewTooShort’: boolean (TRUE/FALSE)

checkperiod if not null number of day before today when the check should be made
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

uniquerespondantID

name of the field where the survey unique ID is stored: string

enumeratorID name of the field where the enumerator ID is stored: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
surveyConsent <- "survey_consent"
dates <- c("survey_start","end_survey")
uniquerespondantID <- "X_uuid"
enumeratorID <- "enumerator_id"
minimumSurveyDuration <- 30
reportingColumns <- c(enumeratorID, uniquerespondantID)

result <- isInterviewTooShort(ds = ds,
surveyConsent=surveyConsent,
dates=dates,

minimumSurveyDuration=minimumSurveyDuration,
reportingColumns=reportingColumns,
deleteIsInterviewTooShort=FALSE)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

isInterviewTooShortForTheHouseholdSize 23

isInterviewTooShortForTheHouseholdSize

Check that the duration relative to the household size of each interview
is more than a threshold

Description

This function check that the duration relative to the household size of each interview is more than
a specified threshold. There is an option to automatically mark for deletion the surveys which are
under the threshold. Warning: If there are uncorrected mistakes in the survey dates, it can lead to
have the length of the survey in seconds and this check will not performed well

Usage

isInterviewTooShortForTheHouseholdSize(
ds = NULL,
surveyConsent = NULL,
dates = NULL,
householdSize = NULL,
minimumSurveyDurationByIndividual = 10,
reportingColumns = c(enumeratorID, uniquerespondantID),
deleteIsInterviewTooShortForTheHouseholdSize = FALSE

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

surveyConsent name of the field in the dataset where the survey consent is stored: string

dates name of the fields where the information about the start and end date of the
survey is stored: list of string (c(’start_date’,’end_date’))

householdSize name of the field in the dataset where the household size is stored: string
minimumSurveyDurationByIndividual

minimum acceptable survey duration for one individual in minutes: integer
reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

deleteIsInterviewTooShortForTheHouseholdSize

(Optional, by default set as FALSE) if TRUE, the survey in error will be marked
as ’deletedIsInterviewTooShortForTheHouseholdSize’: boolean (TRUE/FALSE)

checkperiod if not null number of day before today when the check should be made
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

24 isInterviewWithConsent

uniquerespondantID

name of the field where the survey unique ID is stored: string
enumeratorID name of the field where the enumerator ID is stored: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
surveyConsent <- "survey_consent"
dates <- c("survey_start","end_survey")
householdSize <-"consent_received.respondent_info.hh_size"
uniquerespondantID <- "X_uuid"
enumeratorID <- "enumerator_id"
minimumSurveyDurationByIndividual <- 10
reportingColumns <- c(enumeratorID, uniquerespondantID)

result <- isInterviewTooShortForTheHouseholdSize(ds = ds,
surveyConsent=surveyConsent,
dates=dates,
householdSize=householdSize,

minimumSurveyDurationByIndividual=minimumSurveyDurationByIndividual,
reportingColumns=reportingColumns,

deleteIsInterviewTooShortForTheHouseholdSize=FALSE)
knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

isInterviewWithConsent

Check that all surveys have consent

Description

This function check that all interviews in the dataset have information about the consent of the
people surveyed, meaning all the field where this information is stored is not empty. There is an
option to automatically mark for deletion the surveys which have not consent information.

Usage

isInterviewWithConsent(
ds = NULL,
surveyConsent = NULL,
reportingColumns = c(enumeratorID, uniquerespondantID),
deleteIsInterviewWithConsent = FALSE

)

isSurveyEndBeforeItStarts 25

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

surveyConsent name of the field in the dataset where the survey consent is stored: string
reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

deleteIsInterviewWithConsent

(Optional, by default set as FALSE) if TRUE, the survey in error will be marked
as ’deletedIsInterviewWithConsent’: boolean (TRUE/FALSE)

checkperiod if not null number of day before today when the check should be made
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

uniquerespondantID

name of the field where the survey unique ID is stored: string

enumeratorID name of the field where the enumerator ID is stored: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
surveyConsent <- "survey_consent"
uniquerespondantID <- "X_uuid"
enumeratorID <- "enumerator_id"
reportingColumns <- c(enumeratorID, uniquerespondantID)

result <- isInterviewWithConsent(ds = ds,
surveyConsent=surveyConsent,
reportingColumns=reportingColumns,
deleteIsInterviewWithConsent=FALSE)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

isSurveyEndBeforeItStarts

Surveys where end date/time is before the start date/time

26 isSurveyEndBeforeItStarts

Description

This function check that all interviews in the dataset start before they end. There is an option to
automatically mark for deletion the surveys which have an ending date/time before the starting ones.

Usage

isSurveyEndBeforeItStarts(
ds = NULL,
surveyConsent = NULL,
dates = NULL,
reportingColumns = c(enumeratorID, uniquerespondantID),
deleteIsSurveyEndBeforeItStarts = FALSE

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

surveyConsent name of the field in the dataset where the survey consent is stored: string

dates name of the fields where the information about the start and end date of the
survey is stored: list of string (c(’start_date’,’end_date’))

reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

deleteIsSurveyEndBeforeItStarts

(Optional, by default set as FALSE) if TRUE, the survey in error will be marked
as ’deletedIsSurveyEndBeforeItStarts’: boolean (TRUE/FALSE)

consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

uniquerespondantID

name of the field where the survey unique ID is stored: string

enumeratorID name of the field where the enumerator ID is stored: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
surveyConsent <- "survey_consent"
dates <- c("survey_start","end_survey")
uniquerespondantID <- "X_uuid"
enumeratorID <- "enumerator_id"

isSurveyMadeInTheFuture 27

reportingColumns <- c(enumeratorID, uniquerespondantID)

result <- isSurveyEndBeforeItStarts(ds = ds,
surveyConsent=surveyConsent,
dates=dates,
reportingColumns=reportingColumns,
deleteIsSurveyEndBeforeItStarts=FALSE)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

isSurveyMadeInTheFuture

Surveys that have start date/time after system date

Description

This function check that all interviews in the dataset do not start after the current date. There is an
option to automatically mark for deletion the surveys which have a start date in the future.

Usage

isSurveyMadeInTheFuture(
ds = NULL,
surveyConsent = NULL,
dates = NULL,
reportingColumns = c(enumeratorID, uniquerespondantID),
deleteIsSurveyMadeInTheFuture = FALSE

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

surveyConsent name of the field in the dataset where the survey consent is stored: string

dates name of the fields where the information about the start and end date of the
survey is stored: list of string (c(’start_date’,’end_date’))

reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

deleteIsSurveyMadeInTheFuture

(Optional, by default set as FALSE) if TRUE, the survey in error will be marked
as ’deletedIsSurveyMadeInTheFuture’: boolean (TRUE/FALSE)

checkperiod if not null number of day before today when the check should be made
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

28 isSurveyOnMoreThanADay

uniquerespondantID

name of the field where the survey unique ID is stored: string

enumeratorID name of the field where the enumerator ID is stored: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
dates <- c("survey_start","end_survey")
surveyConsent <- "survey_consent"
uniquerespondantID <- "X_uuid"
enumeratorID <- "enumerator_id"
reportingColumns <- c(enumeratorID, uniquerespondantID)

result <- isSurveyMadeInTheFuture(ds = ds,
surveyConsent=surveyConsent,
dates=dates,

reportingColumns=reportingColumns,
deleteIsSurveyMadeInTheFuture = FALSE)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

isSurveyOnMoreThanADay

Surveys that do not end on the same day as they started

Description

This function check that all interviews in the dataset start and end the same day. There is an option
to automatically mark for deletion the surveys which have different starting and ending dates.

Usage

isSurveyOnMoreThanADay(
ds = NULL,
surveyConsent = NULL,
dates = NULL,
reportingColumns = c(enumeratorID, uniquerespondantID),
deleteIsSurveyOnMoreThanADay = FALSE

)

isSurveyOnMoreThanADay 29

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

surveyConsent name of the field in the dataset where the survey consent is stored: string

dates name of the fields where the information about the start and end date of the
survey is stored: list of string (c(’start_date’,’end_date’))

reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

deleteIsSurveyOnMoreThanADay

(Optional, by default set as FALSE) if TRUE, the survey in error will be marked
as ’deletedIsSurveyOnMoreThanADay’: boolean (TRUE/FALSE)

consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

uniquerespondantID

name of the field where the survey unique ID is stored: string

enumeratorID name of the field where the enumerator ID is stored: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
surveyConsent <- "survey_consent"
dates <- c("survey_start","end_survey")
uniquerespondantID <- "X_uuid"
enumeratorID <- "enumerator_id"
reportingColumns <- c(enumeratorID, uniquerespondantID)

result <- isSurveyOnMoreThanADay(ds = ds,
surveyConsent=surveyConsent,
dates=dates,
reportingColumns=reportingColumns,
deleteIsSurveyOnMoreThanADay=FALSE)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

30 isSurveyStartedBeforeTheAssessment

isSurveyStartedBeforeTheAssessment

Surveys that show start date earlier than first day of data collection

Description

This function check that all interviews in the dataset start after the actual first day of data collection.
There is an option to automatically mark for deletion the surveys which have started before the first
day of data collection.

Usage

isSurveyStartedBeforeTheAssessment(
ds = NULL,
dates = NULL,
surveyConsent = NULL,
startDataCollection = NULL,
reportingColumns = c(enumeratorID, uniquerespondantID),
deleteIsSurveyStartedBeforeTheAssessment = FALSE

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

dates name of the fields where the information about the start and end date of the
survey is stored: list of string (c(’start_date’,’end_date’))

surveyConsent name of the field in the dataset where the survey consent is stored: string
startDataCollection

date of the first day of the data collection: string (’yyyy-mm-dd’)
reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

deleteIsSurveyStartedBeforeTheAssessment

(Optional, by default set as FALSE) if TRUE, the survey in error will be marked
as ’deletedIsSurveyStartedBeforeTheAssessment’: boolean (TRUE/FALSE)

checkperiod if not null number of day before today when the check should be made
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

uniquerespondantID

name of the field where the survey unique ID is stored: string

enumeratorID name of the field where the enumerator ID is stored: string

isuniquerespondantIDDuplicated 31

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
dates <- c("survey_start","end_survey")
surveyConsent <- "survey_consent"
startDataCollection <- "2018-11-11"
uniquerespondantID <- "X_uuid"
enumeratorID <- "enumerator_id"
reportingColumns <- c(enumeratorID, uniquerespondantID)

result <- isSurveyStartedBeforeTheAssessment(
ds = ds,
dates=dates,
surveyConsent=surveyConsent,
startDataCollection=startDataCollection,
reportingColumns=reportingColumns,
deleteIsSurveyStartedBeforeTheAssessment = FALSE)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

isuniquerespondantIDDuplicated

Duplicates in unique ID

Description

This function check that all interviews in the dataset have an ID which is unique. There is an option
to automatically mark for deletion the surveys which have a duplicated unique ID.

Usage

isuniquerespondantIDDuplicated(
ds = NULL,
uniquerespondantID = NULL,
surveyConsent = NULL,
attempt = NULL,
reportingColumns = c(enumeratorID, uniquerespondantID, attempt),
deleteIsuniquerespondantIDDuplicated = FALSE

)

32 isuniquerespondantIDDuplicated

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

uniquerespondantID

name of the field where the survey unique ID is stored: string

surveyConsent name of the field in the dataset where the survey consent is stored: string

attempt name of the field in the dataset where the interview attempt output is stored:
string

reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

deleteIsuniquerespondantIDDuplicated

(Optional, by default set as FALSE) if TRUE, the survey in error will be marked
as ’deletedIsuniquerespondantIDDuplicated’: boolean (TRUE/FALSE)

checkperiod if not null number of day before today when the check should be made

consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

enumeratorID name of the field where the enumerator ID is stored: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
uniquerespondantID <- "X_uuid"
surveyConsent <- "survey_consent"
enumeratorID <- "enumerator_id"
reportingColumns <- c(enumeratorID, uniquerespondantID)

result <- isuniquerespondantIDDuplicated(ds = ds,
uniquerespondantID=uniquerespondantID,
surveyConsent=surveyConsent,
reportingColumns=reportingColumns,
deleteIsuniquerespondantIDDuplicated=FALSE)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

isuniquerespondantIDMissing 33

isuniquerespondantIDMissing

Missing unique ID

Description

This function check that all interviews in the dataset have an ID. There is an option to automatically
mark for deletion the surveys which have not an ID.

Usage

isuniquerespondantIDMissing(
ds = NULL,
uniquerespondantID = NULL,
surveyConsent = NULL,
reportingColumns = c(enumeratorID, uniquerespondantID),
deleteIsuniquerespondantIDMissing = FALSE

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

uniquerespondantID

name of the field where the survey unique ID is stored: string

surveyConsent name of the field in the dataset where the survey consent is stored: string

reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

deleteIsuniquerespondantIDMissing

(Optional, by default set as FALSE) if TRUE, the survey in error will be marked
as ’deletedIsuniquerespondantIDMissing’: boolean (TRUE/FALSE)

consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

enumeratorID name of the field where the enumerator ID is stored: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

34 run_app

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
uniquerespondantID <- "X_uuid"
surveyConsent <- "survey_consent"
enumeratorID <- "enumerator_id"
reportingColumns <- c(enumeratorID, uniquerespondantID)

result <- isuniquerespondantIDMissing(ds = ds,
uniquerespondantID=uniquerespondantID,
surveyConsent=surveyConsent,
reportingColumns=reportingColumns,
deleteIsuniquerespondantIDMissing=FALSE)

knitr::kable(head(result[["ret_log"]], 10))
print(result[["graph"]])

run_app Run the Shiny Application

Description

Run the Shiny Application

Usage

run_app(
onStart = NULL,
options = list(),
enableBookmarking = NULL,
uiPattern = "/",
...

)

Arguments

onStart A function that will be called before the app is actually run. This is only needed
for shinyAppObj, since in the shinyAppDir case, a global.R file can be used
for this purpose.

options Named options that should be passed to the runApp call (these can be any of
the following: "port", "launch.browser", "host", "quiet", "display.mode" and
"test.mode"). You can also specify width and height parameters which pro-
vide a hint to the embedding environment about the ideal height/width for the
app.

enableBookmarking

Can be one of "url", "server", or "disable". The default value, NULL, will re-
spect the setting from any previous calls to enableBookmarking(). See enableBookmarking()
for more information on bookmarking your app.

surveyBigValues 35

uiPattern A regular expression that will be applied to each GET request to determine whether
the ui should be used to handle the request. Note that the entire request path
must match the regular expression in order for the match to be considered suc-
cessful.

... arguments to pass to golem_opts. See ‘?golem::get_golem_options‘ for more
details.

Value

a shiny app

Examples

run_app()

surveyBigValues Report the values greater than a specified value per specified fields

Description

This function provide a report showing all values which are greater than a certain threshold for a
specified list of fields.

Usage

surveyBigValues(
ds = NULL,
questionsSurveyBigValues = NULL,
enumeratorID = NULL,
reportingColumns = c(enumeratorID, uniquerespondantID),
enumeratorCheck = FALSE

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame
questionsSurveyBigValues

columns name from the dataset and value you want to check against (c(col1=value1,col2=value2,...)):
named list of integer

enumeratorID name of the field where the enumerator ID is stored: string
reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

enumeratorCheck

(Optional, by default set to FALSE) specify if the report has to be displayed for
each enumerator or not: boolean (TRUE/FALSE)

36 surveyDistinctValues

checkperiod if not null number of day before today when the check should be made
surveyConsent name of the field in the dataset where the survey consent is stored: string
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

uniquerespondantID

name of the field where the survey unique ID is stored: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
questionsSurveyBigValues <-c(consent_received.food_security.spend_food=25000,

consent_received.food_security.spend_medication=25000,
consent_received.food_security.spend_education=25000,
consent_received.food_security.spend_fix_shelter=25000,
consent_received.food_security.spend_clothing=25000,
consent_received.food_security.spend_hygiene=25000,
consent_received.food_security.spend_fuel=25000,
consent_received.food_security.spend_hh_items=25000,
consent_received.food_security.spend_transport=25000,
consent_received.food_security.spend_communication=25000,
consent_received.food_security.spend_tobacco=25000,
consent_received.food_security.spend_rent=25000,
consent_received.food_security.spend_debts=25000,
consent_received.food_security.spend_other=25000)

enumeratorID <- "enumerator_id"
uniquerespondantID <- "X_uuid"
reportingColumns <- c(enumeratorID, uniquerespondantID)

result <- surveyBigValues(ds = ds,
questionsSurveyBigValues=questionsSurveyBigValues,

enumeratorID=enumeratorID,
reportingColumns=reportingColumns,
enumeratorCheck=FALSE)

knitr::kable(head(result[["ret_log"]], 10))

surveyDistinctValues Number of distinct values (not missing) per fields

Description

This function provide a report showing the number of distinct values for each fields. This report
can be global (all the surveys) or displayed for each enumerator ID

surveyMissingValues 37

Usage

surveyDistinctValues(ds = NULL, enumeratorID = NULL, enumeratorCheck = FALSE)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

enumeratorID name of the field where the enumerator ID is stored: string
enumeratorCheck

(Optional, by default set to FALSE) specify if the report has to be displayed for
each enumerator or not: boolean (TRUE/FALSE)

checkperiod if not null number of day before today when the check should be made

surveyConsent name of the field in the dataset where the survey consent is stored: string
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
enumeratorID <- "enumerator_id"

result <- surveyDistinctValues(ds = ds,
enumeratorID=enumeratorID,
enumeratorCheck=FALSE)

knitr::kable(head(result[["ret_log"]], 10))

surveyMissingValues Report the percentage of missing values (NA) per fields

Description

This function provide a report showing the percentage of missing values (NA) for each fields. This
report can be global (all the surveys) or displayed for each enumerator ID

Usage

surveyMissingValues(ds = NULL, enumeratorID = NULL, enumeratorCheck = FALSE)

38 surveyOtherValues

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

enumeratorID name of the field where the enumerator ID is stored: string
enumeratorCheck

(Optional, by default set to FALSE) specify if the report has to be displayed for
each enumerator or not: boolean (TRUE/FALSE)

checkperiod if not null number of day before today when the check should be made

surveyConsent name of the field in the dataset where the survey consent is stored: string
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
enumeratorID <- "enumerator_id"

result <- surveyMissingValues(ds = ds,
enumeratorID=enumeratorID,
enumeratorCheck=FALSE)

knitr::kable(head(result[["ret_log"]], 10))

surveyOtherValues List of other distinct values (not missing) per fields other with count

Description

This function provide a report showing all distinct other values and the number of occurrences for
each fields "other". This report can be global (all the surveys) or displayed for each enumerator ID

Usage

surveyOtherValues(
ds = NULL,
otherPattern = NULL,
enumeratorID = NULL,
enumeratorCheck = FALSE

)

surveyOutliers 39

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

otherPattern patternto identify the fields containing others values (eg: ’_other$’): string

enumeratorID name of the field where the enumerator ID is stored: string

enumeratorCheck

(Optional, by default set to FALSE) specify if the report has to be displayed for
each enumerator or not: boolean (TRUE/FALSE)

checkperiod if not null number of day before today when the check should be made

surveyConsent name of the field in the dataset where the survey consent is stored: string

consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
otherPattern <- "_other"
enumeratorID <- "enumerator_id"

result <- surveyOtherValues(ds = ds,
otherPattern=otherPattern,
enumeratorID=enumeratorID,
enumeratorCheck=FALSE)

knitr::kable(head(result[["ret_log"]], 10))

surveyOutliers Report the outlier values for all numerical field

Description

This function provide a report showing all outlier values for each numerical fields. The function will
try to automatically determine the type of distribution (between Normal and Log-Normal) based on
the difference between mean and median between untransformed normalized and log transformed
normalized distribution.

40 surveyOutliers

Usage

surveyOutliers(
ds = NULL,
enumeratorID = NULL,
sdval = 2,
reportingColumns = c(enumeratorID, uniquerespondantID),
enumeratorCheck = FALSE

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame

enumeratorID name of the field where the enumerator ID is stored: string

sdval (Optional, by default set to 2) number of standard deviation for which the data
within is considered as acceptable: integer

reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

enumeratorCheck

(Optional, by default set to FALSE) specify if the report has to be displayed for
each enumerator or not: boolean (TRUE/FALSE)

checkperiod if not null number of day before today when the check should be made

surveyConsent name of the field in the dataset where the survey consent is stored: string

consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

uniquerespondantID

name of the field where the survey unique ID is stored: string

Value

dst same dataset as the inputed one but with survey marked for deletion if errors are found and
delete=TRUE (or NULL)

ret_log list of the errors found (or NULL)

var a list of value (or NULL)

graph graphical representation of the results (or NULL)

surveySmallValues 41

surveySmallValues Report the values lower than a specified value per specified fields

Description

This function provide a report showing all values which are lower than a certain threshold for a
specified list of fields.

Usage

surveySmallValues(
ds = NULL,
questionsSurveySmallValues = NULL,
enumeratorID = NULL,
reportingColumns = c(enumeratorID, uniquerespondantID),
enumeratorCheck = FALSE

)

Arguments

ds dataset containing the survey (from kobo): labelled data.frame
questionsSurveySmallValues

columns name from the dataset and value you want to check against (c(col1=value1,col2=value2,...)):
named list of integer

enumeratorID name of the field where the enumerator ID is stored: string
reportingColumns

(Optional, by default it is built from the enumeratorID and the uniquerespondan-
tID) name of the columns from the dataset you want in the result: list of string
(c(’col1’,’col2’,...))

enumeratorCheck

(Optional, by default set to FALSE) specify if the report has to be displayed for
each enumerator or not: boolean (TRUE/FALSE)

checkperiod if not null number of day before today when the check should be made

surveyConsent name of the field in the dataset where the survey consent is stored: string
consentForValidSurvey

value defined in the kobo form to acknowledge the surveyed person gave his
consent: string

uniquerespondantID

name of the field where the survey unique ID is stored: string

Value

result a list that includes: * dst same dataset as the inputed one but with survey marked for deletion
if errors are found and delete=TRUE (or NULL) * ret_log list of the errors found (or NULL) * var
a list of value (or NULL) * graph graphical representation of the results (or NULL)

42 surveySmallValues

Examples

load(system.file("sample_dataset.RData", package = "HighFrequencyChecks"))
ds <- sample_dataset
questionsSurveySmallValues <-c(consent_received.food_security.spend_food=25000,

consent_received.food_security.spend_medication=25000,
consent_received.food_security.spend_education=25000,
consent_received.food_security.spend_fix_shelter=25000,
consent_received.food_security.spend_clothing=25000,
consent_received.food_security.spend_hygiene=25000,
consent_received.food_security.spend_fuel=25000,
consent_received.food_security.spend_hh_items=25000,
consent_received.food_security.spend_transport=25000,
consent_received.food_security.spend_communication=25000,
consent_received.food_security.spend_tobacco=25000,
consent_received.food_security.spend_rent=25000,
consent_received.food_security.spend_debts=25000,
consent_received.food_security.spend_other=25000)

enumeratorID <- "enumerator_id"
uniquerespondantID <- "X_uuid"
reportingColumns <- c(enumeratorID, uniquerespondantID)

result <- surveySmallValues(ds = ds,
questionsSurveySmallValues=questionsSurveySmallValues,

enumeratorID=enumeratorID,
reportingColumns=reportingColumns,
enumeratorCheck=FALSE)

knitr::kable(head(result[["ret_log"]], 10))

Index

assessmentDailyValidSurveys, 3
assessmentDuration, 4
assessmentDurationOutliers, 5
assessmentInterviewTime, 6
assessmentProductivity, 7
assessmentTrackingSheet, 8

enableBookmarking(), 34
enumeratorErrorsSummary, 10
enumeratorIsLazy, 11
enumeratorProductivity, 12
enumeratorProductivityOutliers, 13
enumeratorSurveysConsent, 14
enumeratorSurveysDuration, 15

isInterviewAtTheSamplePoint, 16
isInterviewCompleted, 18
isInterviewInTheCorrectSite, 19
isInterviewTooShort, 21
isInterviewTooShortForTheHouseholdSize,

23
isInterviewWithConsent, 24
isSurveyEndBeforeItStarts, 25
isSurveyMadeInTheFuture, 27
isSurveyOnMoreThanADay, 28
isSurveyStartedBeforeTheAssessment, 30
isuniquerespondantIDDuplicated, 31
isuniquerespondantIDMissing, 33

run_app, 34

surveyBigValues, 35
surveyDistinctValues, 36
surveyMissingValues, 37
surveyOtherValues, 38
surveyOutliers, 39
surveySmallValues, 41

43

	assessmentDailyValidSurveys
	assessmentDuration
	assessmentDurationOutliers
	assessmentInterviewTime
	assessmentProductivity
	assessmentTrackingSheet
	enumeratorErrorsSummary
	enumeratorIsLazy
	enumeratorProductivity
	enumeratorProductivityOutliers
	enumeratorSurveysConsent
	enumeratorSurveysDuration
	isInterviewAtTheSamplePoint
	isInterviewCompleted
	isInterviewInTheCorrectSite
	isInterviewTooShort
	isInterviewTooShortForTheHouseholdSize
	isInterviewWithConsent
	isSurveyEndBeforeItStarts
	isSurveyMadeInTheFuture
	isSurveyOnMoreThanADay
	isSurveyStartedBeforeTheAssessment
	isuniquerespondantIDDuplicated
	isuniquerespondantIDMissing
	run_app
	surveyBigValues
	surveyDistinctValues
	surveyMissingValues
	surveyOtherValues
	surveyOutliers
	surveySmallValues
	Index

